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Nonlinear canonical transformations: I 

R K Colegrave and Ponnudurai Bala 
Department of Mathematics, Chelsea College, University of London, 552 King's Road, 
London SW10, UK 

Received 2 August 1983, in final form I November 1984 

Abstract. The linear canonical transformation Q = aq + bp, P = cq + dp, ( a d  - bc = I ,  [ q, p ]  = 
constant) is extended to include terms of the second, third and fourth degree. Products 
of second-degree transformations are used to construct third- and fourth-degree transforma- 
tions. The question of factorisability of fourth-degree transformations is discussed. 

1. Introduction 

As is well known, the necessary and sufficient condition that the linear transformation 

be canonical in either classical or quantum mechanics is that 

1," ,"/ = l .  

( I . l a )  

( I . lb )  

The transformations then form the symplectic group Sp(2). In the case of N degrees 
of freedom, transformations of type (1.1) form the dynamical group of the N -  
dimensional harmonic oscillator (Moshinsky and Quesne 1971). From the numerous 
applications of such transformations that have been made, we single out that of Elliott 
(1958) on the SU(3) symmetry of the three-dimensional oscillator in problems of 
nuclear structure, and also the work of Colegrave and Abdalla (1981, 1982) on 
time-dependent harmonic oscillators. 

Turning our attention to the case of nonlinear canonical transformations, we might 
expect to be able to solve some new problems in quantum (or classical) mechanics 
provided we have suitable canonical transformations at hand. Some progress has 
already been made in this direction. Moshinsky et a1 (1972) have derived the dynamical 
group of canonical transformations for the radial oscillator problems and for the 
Coulomb problem with a centrifugal force of arbitrary strength. Mello and Moshinsky 
( 1975) give further specific examples of useful transformations. 

Certain anharmonic oscillator problems are obvious candidates for canonical trans- 
formation to solvable form. In this case the useful transformations would almost 
certainly be extensions of ( 1  . l )  to include second- and possibly higher-degree terms 
in q, p .  This line of thought is mainly responsible for the present work. Carhart (1971) 
has discussed an interesting method of successive canonical transformation to treat 
the anharmonic oscillator. Some solvable anharmonic oscillators have been discussed 
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780 R K Colegrave and P Bala 

by Flessas and Das (1980), Flessas (1981a, b) and Magyari (1981) (see also Flessas et 
a1 1983). 

Looking at more general transformations, Deenen ( 198 1 )  has discussed non-bijec- 
tive canonical transformations where the spectra of the original and transformed 
Hamiltonians are different. In the nonlinear case we cannot always expect a one-one 
correspondence between classical and quantal transformations. Halpern ( 1973) and 
Fanelli (1976) have shown that many transformations that are canonical in classical 
mechanics are not canonical in quantum mechanics and vice versa. However, this will 
not concern us in the work presented here, since all the transformations we shall 
consider may be regarded as either quantum mechanical or classical. When the occasion 
demands we shall indicate the quantum mechanical forms. 

We shall confine our attention to transformations of the form 

0 = A s ,  P) + aq + bp, p = g ( 4, p )  + cq + dp, ( 1.2a, b) 

where S, g are second- third- or fourth-degree expressions in the non-commuting 
variables q, p .  We shall find necessary and sufficient conditions for canonicity by 
requiring that the following classical or quantum Poisson bracket relation shall hold, 

IQ, PI = Iq, PI (1.3) 

(Goldstein 1980, Wollenberg 1980). 
We shall begin by considering an important class of transformations for which the 

degree of the functions f and g in equations (1.2) is unrestricted. We shall then 
particularise to the cases mentioned above. In principle it would be possible to extend 
our analysis to functions f and g of higher degree. Generating functions will be 
considered in § 6 and some applications will be given in § 7. 

2. A special class of nonlinear canonical transformations 

We have discovered a special class of transformations which plays a leading role in 
our investigation. We shall state our result in classical terms, but it is easy to see that 
it is equally valid in quantum mechanics, where we need to symmetrise all products 
with respect to q and p .  

The transformation 

Q = F (  9 + YP> + aq + bp, P = x F (  q + y p )  + cq + dp, (2.la, b )  

a d - b c =  1, (2 . lc )  

where F is any differentiable function of q + y p  and x, y are real numbers, is canonical 
if and only if x, y are connected by the bilinear relation 

y = ( bx - d ) / ( ax - c ) . (2 . ld )  

The proof follows directly from (2.la, b, c): 

[O, PI= ( c - a x ) [ E  s l+(d-bx)[F ,p l+(ad-bc) [q ,p l  
=[ (ax  - C )  dF/dp- (bx-d)  a F / a q +  1][q,p] 

= [ q , p I  i f fy(ax-c)=bx-d .  
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We note the following relation from (2.1~2, b ) ,  

x Q  - P = (ax - c ) q  + ( b x  - d)p, (2.2a) 

which in view of (2.ld) may be written 

q + y p  = ( 6 -  a Y ) ( x Q -  P ) .  (2.26) 

Provided y # bl a the transformation (2.1) has the inverse 

9 = y G ( x Q  - P )  + dQ - bP, p =  - G ( x Q - P ) - c Q + a P ,  (2.3a, 6 )  

G ( s )  = F [ ( b  - a y ) s ] / ( b  - a y ) .  ( 2 . 3 ~ )  

As we shall see very clearly later, the transformations (2.1) do nor form a group. Thus 
some transformations ( 1.2) are ‘missing’ in (2.1 ). 

2.1. Second-degree canonical transformations 

We take the general second-degree transformation T‘2’( a,, 6, ) :  

Q = a , q 2  + a z ( q p + p q )  + a3p2+ aq + bp + a4, 

P = b , q 2 +  b 2 ( q p + p q ) +  b3p2+ cq + dp+ 6,. 

( 2 . 4 ~ )  

(2.46) 

We may without loss of generality set a4= b 4 = 0  in the same way as we ignored 
translational terms in the transformation ( 1. l ) ,  but we note that such terms could be 
time dependent and so influence the generating function. It would be a trivial task to 
include the extra terms in such a case. 

Equation ( 1.3) gives the following necessary and sufficient conditions for the 
transformation (2.4) to be canonical: 

(2.5~1, 6 )  

(2.5c, d )  

We introduce the parameters x = bl /a l  and y given by (2.1 d ) ;  then equations (2.50, 6, c)  
reduce to 

bi = a,x ( i  = 1,2,3), a2 = sly, a3 = a , y 2 .  (2.6~4 6 )  

a d b ,  = a2/b2= a31b3, 

a2d - 626 = a 3 ~  - b,a, 

a i d  - 6 ,  b = U ~ C  - bza, 

ad - bc = 1. 

Taking a ,  arbitrary, equations (2.4), (2.6) give 

Q = a i ( q + y p ) 2 +  aq+ bp, 

P = a ,  x (  q + y ~ ) ~  + cq + dp, 

( 2 . 7 ~ )  

(2.76) 

where a, 6, c, d must satisfy ( 2 . 1 ~ )  and x, y must satisfy (2.ld).  Thus all the 
second-degree canonical transformations (2.4) are of the form (2.1) with F = 

a , ( q + Y p ) * .  

3. Third-degree canonical transformations 

Transformations of the type (1.2) with f and g expandable in Taylor series in the 
(non-commuting) variables q and p obviously form a subgroup of the complete group 
of all possible canonical transformations. On the other hand, transformations of the 
type (2.1) clearly do  not form a group, so that as we increase the degree o f f  and g 
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we must eventually encounter canonical transformations that are more general than 
those described by equations (2.1). The first time this happens is when f and g are 
of the third degree. 

The general third-degree transformation T ( 3 ) (  a ,  bi) of the form (1.2) with [ q, p ]  = 
constant will be written 

0 = a1 q3 + 3a2qpq + 3a3pqp+ a4p3+ aSq2+ a6(qP+pq)+ a7p2+ aq + bp, ( 3 . 1 ~ )  

P = biq3 + 3624~4 + 3b3pqp + b4p3 + bsq2 + b6(qP +Pq) + b7P2+ C q  + dP, (3.lb) 

where we have used the fact that 

q 2 P  +m2 = QPq, P 2 9  + 4P2 = 2PW. 
We write 

A = b5/as, p = b6/ v = b7/a7; 

then equation (1.3) leads to 

bi = aix ( i=1 ,2 ,3 ,4) ,  (3.4a) 

a6 = a 5 y ( x -  A - p ) ,  a 7 = a S y 2 ( ~ - h ) / ( ~ -  v), (3.4c) 

a2 = a,y,  a3 = U I Y 2 ,  a4 = aly3,  (3.46) 

b A - d x - p  b p - d  X - v  y = = = - = s  - (3.4d) 

( A  + v ) ( x + p ) = 2 ( x p + A v ) ,  (3.4e) 

3 a , [ y ( a ~ - ~ ) - ( b ~ - d ) ] r ; . 2 a : y ( A  - v)(x-A)/(x- v), (3.4f) 

a d - b c = l .  (3.4g) 

Thus the general third-degree canonical transformation is necessarily of the form 

0 = ai (q + Y P ) ~  + a s { q 2 + y [ ( x - A ) / ( x  - P ) I ( ~ P  + p q )  +Y’[(x-  A ) l ( x  - v ) b 2 1 +  aq + bp, 
(3.5a) 

(3.5b) 

where a, b, c, d satisfy (3.4g), a , ,  x, A are arbitrary and as, y, p, v are determined by 
the four equations contained in (3.4d, e,f). We note that the choice x = A makes 
p = v = x. ( In  fact the equality of any pair from x, A, p, v makes them all equal.) In 
this case equations (3.5) take the special form (2.1) with F =  a l (q+yp)3+as(q+yp)2  
(note that a5 depends on a,  according to equation (3.4f)). 

On fixing a , ,  x, A ( #  x)  it is surprisingly difficult at this stage to find specific solutions 
of equations (3.4d, e,f) for a5, y, p, v. However, when we have investigated fourth- 
degree transformations in $4 we shall be able to construct systematically T ( 3 )  transfor- 
mations that are nor of the special type (2.1). 

p = a d q  +.YP)3+ a s h 2 +  PY[(X - A ) / ( x  -cL)1(4P + P 9 )  

+ VY2C(X - A ) / (x  - V)lP2) + cq + dP, 

Using equation (3.4d), a useful alternative to (3.5) is 

( 3 . 6 ~ )  
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4. Fourth-degree canonical transformations 

4.1. The product of two second-degree canonical transformations 

We saw in § 2 that T”’ transformations are necessarily of the special form (2.1) but 
the product of two such transformations is not of this special form. We can construct 
at least a certain class of fourth-degree transformations as products of two T”) 
transformations. We shall discuss later the interesting question whether this class 
includes all the T(4’ transformations. Let us take T!”: (9 ,  p )  + (q’,  p ’ )  of the form 

4‘ = a , ( q  + YP)’+ aq + bp, 

P’ = a , x ( q  + YP)’+ cq + dp, 

ad - bc= 1, Y = ( b x  - d ) / ( a x -  c), 

followed by Ty’ :  (q’,  p ’ )  + (Q,  P ) ,  

Q = aj(q’+y’p’)’+a’q‘+ b‘p‘, 

P = a ’ , x ’ ( q ‘ + y ’ p ’ ) ’ + c ’ q ’ + d ’ p ‘ ,  

aid’-  b‘c’= 1, Y‘ = (b‘x’ - d ’ ) / (  a’x’ - c’). 

( 4 . 1 ~ )  

( 4 . l b )  

( 4 . 1 ~ )  

( 4 . 2 ~ )  

(4.2b) 

( 4 . 2 ~ )  

The product transformation T(4) = T$2’T\2’: (4 ,  p )  + ( Q ,  P) is 

Q = a:a’l( 1 +xY‘I2(q + ~ ~ ) ~ + 2 a , a ’ , (  1 +xY’){(q + Y P ) ’ [ ( ~  + Y’c)q + ( b +  ~ ’ d ) ~ l } s y m m  

+ a l (  a‘+ b’x)( q + ~ p ) ~  + a ; [ (  a + y’c)q + ( b  +y’d)p12 

+ ( a a ‘ i  b’c)q + (a‘b+ b’d)p,  (4.3a) 

P = a:a {x‘( 1 + X Y ’ ) ~ (  4 + Y P ) ~  + 2al a I ( 1 + XY ‘){( + Y P ) ’ [ ( ~  + Y ‘ C )  4 + ( b  + y’d ) ~ I } s y m m  

+ a , (  c’+ d ’x ) (  q + y p ) ’ +  a{x‘[(  a + y’c)q + ( b  +y’d)p12 

+(ac’+cd’)q+(bc’+dd’)p,  (4.3b) 

where the second terms need to be symmetrised. 
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then the condition for canonicity ( 1.3) requires 

bi = a,x ( i  = 1,2,3,4,  S ) ,  ( 4 . 6 ~ )  

0 2  = aiy, a3 = a ,y2 ,  a4 = UIY 3 9 a5 = UtY4, (4.66) 

ad - bc= I ,  ( 4 . 6 ~ )  

together with some further equations (Baia 1985) analogous to (3.4c, d, e , f )  to deter- 
mine a6, a,,, y,  p, y, S, p, v in terms of U,, x, cy, A, which may be chosen arbitrarily. 
In the special case x = (Y we find that p = y = S = x and the conditions (4.6) extend 
(Bala 1985) to give 

bj = ajx ( j  = 6 , 7 , 8 , 9 ) ,  (4 .6d)  

ai I = a , o u ( x - A ) / ( x  - w L  ~ I ~ = ~ I O Y ~ ( X - A ) / ( X -  v), (4 .6e, f )  

3a,y2= a9+2y3a6,  3a,y = 2 U 9 + Y 3 U 6 ,  (4.6g, h )  
from which it is apparent that the transformation (4.4) reduces to 

Q = a l ( ~ + y ~ ) 4 + [ ( q + y ~ ) 2 ( a 6 q + a 9 p / y 2 ) l ~ ~ ~ ~  

+ a 1 0 1  q2 + Y [ ( x  - A )/ ( X  - CL ) I (  9~ + ~ 9 )  + Y ’ [ ( x  - A )/ ( X  - v)lp2} + aq + bp, 
(4.7a) 

(4.76) 

where the subscript (symm) denotes that the term should be symmetrised as in (4.3~2, b ) .  
On suitably renaming the coefficients the transformation (4.7) may be identified with 
the product transformation (4.3). Provided y # ( b x  - d ) / ( a c -  c ) ,  then 

x = c y ( e c y  = p  = y =  S ) Q  T‘4’= p x  T‘2’. (4.8) 

If y = ( b x - d ) / ( a x - c ) ,  then T‘4’ takes the form (2.1). 

following must be satisfied (in the case x = a ) :  
It should be noted that in addition to the conditions (4.6) already listed, the 

(4.6 i )  

(4.6j) 

2U,[y(UX - C )  - (bX - d ) ] +  a,0(U9/y2- U,y)(X - A )  =o, 
y2a6[2y(ax- c )  -3 (bx  - d ) ] +  a9(ax - c )  +4a:,y3(p - A ) ( x  - A ) / ( x  - p )  = 0, 

y3a6( bx - d )  - a9[3y( ax - C )  - 2( bx - d ) ]  

+ 4&y4(p - V ) ( X  - A)’/[(x - p ) ( x  - v)] = 0, (4.6k) 

bA-d X - p  b p - d  X - - V  - y = x-A - av-c G* (4.61) 

These five equations should be solvable to give a,, a,,, y,  p, v in terms of a , ,  a6, x, A 
(or we could fix p or v and calculate A, v or A, p ) .  

Suppose we choose a 9 = a 6 y 3 ;  then from (4.6i) we see that a l = O  provided y #  
( b x  - d ) / (  ax - c ) .  In this case the canonical transformation T(4) degenerates to F3)  
and equations (4.6j, k) become 

(4.9a) 

(4.9b) 

3a6(x - p ) [ y (  ax - C) - ( b x  - d )] 4a:,y( p - A ) ( X  - A ) = 0, 

3a6( X - p )( X - v ) [ y (  ax - C) - (bx - d ) ]  -k 4a:,y( v - p ) (  X - A ) 2  = 0. 
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From (4.9a, b) we see that x, A, p, v must be connected by equation (3.4e). Thus on 
putting a, = a6y3, equations (4.6d-I) become equations (3.4~-f) with a ,  + a6, as+ ala, 

a6+ a , , ,  a,+ a I 2 .  In $ 5  we give a numerical example showing how this enables us to 
construct T'3' transformations with unequal values of x, A, p, U .  

5. Third-degree transformations constructed from products of second-degree 
transformations 

We may take the product of any two T'" transformations to obtain approximate values 
of the second-degree coefficient ratios A, p, v, These values are systematically recalcu- 
lated as we shall describe by means of an  example. 

Let us take 

T ' 2 ' : a = 2  b = c = d = l  x = 2  3 y=' 3 ,  a I -  - 1  9 ( 5 . 1 ~ )  

T"": a ' = b ' = c ' = l  d t = 2 , x ' = ; , y = 3 , a ; = 3 .  ( 5 . l b )  

Then from (4.3a, b), T'4' = T"" x T'2' has the form 

0 = 147(q + ~ / 3 ) 4 + 2 1 [ ( q  +P/3)2(5q +4P) + (5q+4P)(q+P/3)*1 

p = ~ ' ( q + P / 3 ) 4 + ' i 1 [ ( q + P / 3 ) 2 ( 5 q + 4 P )  + (5q+4p)(q+P/3)21 

+3(5q +4p)2+ 3( q +p/3)* + q +2p, ( 5 . 2 ~ )  

+ 3 5 q  +4p)2+ 5(q +p/3)*+4q +3p. (5.2b) 

Here (Y = p = y = S = x =; and we read off 

A = b l o / a l o  = 85/ 156 = 0.544 87 17, 

p = b b , , / a l l = 9 5 / 1 8 3 = 0 . 5 1 9  1256, 

v =  bI2/a,,=221/435 =0.508 0459. 

( 5 . 3 ~ )  

(5.3 b) 

(5.3c) 

These values of A, p, v satisfy (3.4d) almost exactly; thus with a = 3, b = 2, c = 4, d = 3, 

bh-d  X - p  
y=== =3 y = 0.333 3325, 

b p - d  X - U  
=3 y = 0.333 33 15. 

y=== 

(5.4a) 

(5.4b) 

Equation (3.4e) is not satisfied so well, the discrepancy between the two sides of the 
equation being 0.027'/0. As discussed in 0 3, we may choose x and  one of the parameters 
A, p, v arbitrarily, using (3.4d, e )  to calculate the others. On taking p from (5.3b) and  
eliminating v we obtain a quadratic equation which yields 

A =OS19 3882 or  0.518 9375, (5.5) 
from which we calculate the corresponding values of v and y. Thus we establish the 
existence of two T'3' transformations with x = 0.5, a = 3, b = 2, c = 4, d = 3, a ,  arbitrary 
and 

A = 0.519 3882, p =OS19 1256, v = 0.518 8657, y = 0.7920, ( 5 . 6 ~ )  

A = 0.5 18 9375, p = 0.5 19 1256, v = 0.519 3129, y = 0.81 12. (5.66) 
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In either case a5 is determined by equation ( 3 . 4 f ) .  Although rather close in value, the 
parameters x, A, p, v are thus seen to be distinct. We note the very appreciable change 
in the values of y given by (5 .4) ,  (5.6). 

6. Generating functions 

For a canonical transformation (q,  p )  -$ ( Q ,  P ) ,  generating functions F,(  q, Q ) ,  F2( q, P )  
may be found (Goldstein 1980) such that 

P = a F , / a q ,  P =  -aF, /aQ,  ( 6 . 1 ~ )  

P = aF2/aq, Q = dF2/dP.  ( 6 . l b )  

For the transformation ( 1 . 1 )  we find that 

F I  = ( q Q +  Qq - a q 2 -  d Q 2 ) l ( 2 b ) ,  

F2 = ( q P  + Pq + bP' - c q 2 ) / ( 2 d ) .  

( 6 . 2 ~ )  

(6 .26)  

The F ,  generating function has the useful property that for a transformation T ( a ' :  
FI FI 

(9, p )  - (i, p') with F ,  = F / " ' (  9, 4) followed by T'b ' :  (i, p') - (0, P )  with F ,  = F',b' 
(4, Q ) ,  the product transformation T"" x T"): (4, p )  - ( Q ,  P )  has FI 

F i ( q ,  Q )  = F / " ' ( q ,  4) + F'ib ' ( i ,  Q ) .  (6 .3)  

In this case when a, b, c, d are functions of the time 

f f ( q , p ,  f)- K ( Q ,  P, f ) = H ( Q ,  P, t)+aFi/af 
F,iO 

( i =  1 o r 2 ) .  (6 .4)  

6.1. Second-degree canonical transformations 

For simplicity let us consider first the case x = d / b ,  so that y = 0;  then equations (2 .7)  
reduce to 

(6 .5a,b)  Q = a ,  q2 + aq + bp, P = a , d q 2 / b +  cq + dp, 

and it is easy to see that 

F2(q,  P )  = ( q P  + Pq + b P 2  - c q 2 ) / ( 2 d )  -falq3/ b, (6 .6)  

which is a simple extension of (6 .2b) .  
In the case y Z 0 we find, as shown in the appendix, 

( c - a x ) d  

c - a x  (6 .7)  

Rather than attempt to use this cumbersome result it is better to take (2 .7)  as the 
product of 

T(" ' :  i = q + y p ,  ;=p,  ( 6 . 8 ~ )  
T'b ' :  Q = a , i 2 +  a i +  b'4, b' = l / (ax - c ) ,  

d '  = b 'x ,  P = a I x i 2  + c 4  + d'p', (6 .86)  
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for which 

F ' , " ' = ( q i + ~ q - q 2 - i 2 ) l ( 2 y ) ,  (6.9a) 

( Q i + i Q - a G 2 - d ' Q Z ) / ( 2 b ' ) - a , q ' 3 / ( 3 b ' ) .  (6.9b) 

Then the overall generating function is given by (6.3) and, in the case when a,  b, c, d 
or  a ,  are functions of the time, the new Hamiltonian is 

K = H+aF',a' /at+aF',b' /at .  (6.10) 

6.2 Third- and fourth-degree canonical transformations 

It appears that the only case in which a generating function can be constructed is when 
x = A (third degree) or  x = a (fourth degree). We can split up  the transformation in 
a similar way to ( 6 . 8 4  b )  and use (6.10) to calculate the transformed Hamiltonian. 

7. Applications 

7.1. Attempt to treat an anharmonic oscillator 

In order to obtain the exact solution for an  anharmonic oscillator, we need to transform 
a Hamiltonian of the form 

N 

H =  A,qr+aq2+pp2+yq ( N = 3 , 4 , 5 , . .  .), (7.1) 
r = 3  

where the coefficients are possibly functions of the time, to a solvable Hamiltonian of 
the form 

K = H + a F / a t  = AQ2+ BP2+2CQP, (7.2) 

where F is a generating function and A, B, C are suitably chosen constants or functions 
of the time. Let us suppose that Q, P are related to q, p by a Ti3' transformation. The 
degree of the transformation does not materially affect the argument, but a Ti3' gives 
a more complete picture than a Ti". A general T(3J is difficult to specify explicitly, as 
we discussed in 0 3 ,  and consequently we confine or  discussion to the special form 
(2.1) with y = 0: 

Q = a ,  q3  + a ,  q2 + aq + bp + e, 

P=a,xq3+a2xq2+cq+dp+f  ( x  = d / b ) ,  

(7.3a) 

(7.3b) 

with the coefficients possibly time-dependent and  connected only by (3.4g). Then from 
(7.2) 

b C a 
H = A Q 2  + BP2 + 2CQP +-P2 -- q2 - - L q 4  -3 q3 + e p  

2d 2d 4b 3b 

where we have used an  obvious extension of (6.6) for the generating function E 
Substituting P from (7.36) into (7.4) after the differentiation, it is easy to see that the 
coefficients of both q2p and q3p vanish if we choose A, B, C,  b, d such that 

2 ( b 2 A  + d 2 B  + 2bdC) - db + bd = 0. (7.5) 



788 R K Colegrave and P Bala 

Similarly the coefficient of qp vanishes if 

2[abA+ cdB + ( a d  + b c ) C ] +  ad - c6 = 0 

and the coefficient of p vanishes if we take e = f =  0. Furthermore, (7.5) makes the 
coefficients of q5 and q6 vanish (which does not matter) but also makes the coefficient 
of p z  vanish. Thus, whether the coefficients are constants or functions of the time, the 
only Hamiltonian (7.1) that we can transform to (7.2) using (7.3) has the degenerate form 

H = A q4 + pq3 + a q 2  + yq + 6p. (7.7) 

Flessas (1981a, b) has shown that certain Hamiltonians of the form (7.1) with constant 
coefficients have exact solutions and it should be possible to apply nonlinear transfor- 
mations T'")  to discover further exactly solvable systems. With constant coefficients 
there is no need for a generating function but, as we have seen, the general T'") 
transformation ( n  z- 3) is complicated and further work is necessary before we can 
continue our search for reducible Hamiltonians of the form (7.1). 

7.2. Time-dependent harmonic oscillators 

Constants of the motion for certain time-dependent harmonic oscillators may be 
discovered by canonically transforming via a suitable T'"' to a new Hamiltonian of a 
simple form in Q or P. Let us consider as an illustration 

H =4e-"q2+(e2'-  l)p2+e-'q, (7.8) 

K = H + a F / a t  = Q, (7.9) 

which transforms to 

where 
Q = 8 e-3'( q - f e'lp)' + 4 e-2'( q - f e"p)'+ e-'q. ( 7 . 1 0 ~ )  

This transformation corresponds to an extension of (2.7) to include third-degree terms. 
A generating function of the type (6.9) has been used and the coefficients are given by 

a ,  = 8 e-3', a, = 4 e-,', a = e-' b = c = O ,  d =e', 

(7.10b) I 21 x = 2, y = - s e  . 
The equations of motion = 0, P = - 1 give 

Q = constant, P = constant - t (7.1 1 )  

and provide constants of the motion for (7.8). An unlimited number of examples of 
this kind may be constructed. Transformations of the type T'4' = T(') x T"' given by 
(4.3) may be used instead of (2.1). Of course, one has to start with a T '" ) :  (9, p )  + (0, P) 
and see what Hamiltonians this will reduce. 

8. Conclusion 

In § 2 the existence of an important type of nonlinear canonical transformation (2.1) 
was established. When the function F ( q + y p )  is taken as a Taylor series, extensions 
of (2.7) involving higher powers of ( q + y p )  are obtained. The connections between 
U, b, c, d and x , y  are given by (2.lc,d).  
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We have considered the general nth-degree transformation T"(a ,  bi) of type (1.2) 
in the cases n = 2,3,4 as in (2.4), (3.1), (4.4) respectively. In the case n = 2 the situation 
is very simple: all T ( 2 )  transformations are of the type (2.1). For n = 3 not all of the 
transformations are of the type (2.1). The general T ( 3 )  has the form (3.5), where we 
see that the third-degree terms form a perfect cube, as demanded by (2.1), but the 
second-degree terms no longer necessarily assume the form of a perfect square. The 
ratios x = b, /a ,  and one of A = b5/a5, p = b,/a,, U = b7a7 can be equal only if all of 
them are equal, Then y = ( b x - d ) / ( a x - c )  and we have again the special type (2.1). 
Our initial attempts to construct numerical examples of solutions of equations (3.4) 
with unequal x, A, p, v led to complex solutions for x or y. By taking starting values 
as described in 0 5 we were able to find real solutions. 

T'4) transformations can be constructed as products of T'2' transformations. 
ObviouFly a transformation of the type (2.1), 

( 8 . 1 ~ )  

(8.lb) 
Q = a I ( 9  + 
p = XQ + ( c - a x )  ( 9  + YP),  

+ a'( 9 + Y P ) 3  + a3( 4 + YP 1' + a9 + bP, 

i.e. (2.26) 

with the constraints 

ad - bc= 1, Y = ( bx - d ) / ( ax - c ) , ( 8 . 1 ~ )  

cannot be written in the form (4.3) and does not factorise. We have introduced the 
parameters a, p,y, S and A, p, Y given by (4.54 b) for the terms of third and second 
degree and we have found that T'4) = Ti'' x T'') , if, and only if, x =  a = p  = y =  S and 
y #  (bx-d) / (ax-c) .  In this case the third-degree terms in (4.7~2, b) form ( 9 s ~ ~ ) ~  
only if we choose a = y3a6. From (4.6i) this is the condition for a ,  = 0, i.e. the T(4) 
degenerates into a d3). A complete analysis of T(4) transformations leads to conditions 
to be satisfied (Bala 1985) that are much more complicated than (3.4), as may be seen 
from (4.6), which constitute a simplified subset. To construct solutions with x, a, p, 
y, 6 real and unequal is difficult, as it is for T(3' transformations, but we see no reason 
to suppose that such non-factorisable transformations do not exist. We have established 
that all T'4' transformations have fourth-degree terms as in (8.1) and similarly for the 
highest-power terms in other T'")  transformations n = 5 , 6 . .  . . 

T ( 5 )  and T',' transformations are analogous to T'3' and T'4' in that a T(51 is necessarily 
prime, whereas a T',) may or may not be factorisable into T'3' x T") (or T(') x T'3'). 

The restricted transformations (2.1) do not enable us to reduce an anharmonic 
oscillator problem to solvable form. This should be possible in view of the work of 
Flessas (1981a, b) and Leach (1981). A possible approach would be to reduce H to 
K = (xQ - P)', where (9, p )  + ( Q ,  P) is a prime T'"' ( n  3 4) with unequal parameters 
x, a associated with the nth-, ( n  - 1)th-degree term. 

The set of all transformations T'") ( n  = 2,3,4, . . .) obviously forms a group and it 
is from this point of view that we can expect real progress in a further study of their 
properties. 

Appendix. Generating function for the general second-degree canonical transformation 

Differentiating equation ( 2 . 2 ~ )  and substituting Q = aF2/aP according to equation 
(6.1 b), we obtain 

xaF,/aP-P= ( a x - c ) ( q + y p ) .  (A1 1 
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Again, eliminating p from equations (2.7a, b ) ,  we obtain 

d a F2/aP - bP = a ,  ( d  - bx)(  q + ypI2 + q. 

Eliminating q + y p  from (Al) ,  ( A 2 ) ,  

a , ( d  - bx)(xaF,/aP - P ) 2  = ( a x  - ~ ) ~ ( d  aF2/aP- b P -  9). 

x aF2(q, P ) / d P -  p = f ( q ,  P), 

d F , / a P = ( P + f ) / x .  ( A 4 )  

aIxyf2 - d (  c - U X ) ~  - ( c - U X ) [ ( ~  - b x ) P  - X S ]  = 0. 

(A31 

Let 

i.e. 

Then (A3)  gives 

(A51 

Solving (A5) and using ( A 4 ) ,  

4y [ ( d - b x ) P - x q ]  
aF2 1 c - a x [ d  ( f 2  
-=- P+- -* -+- 
aP x ~ U , X J J  x C-ax 

Integrating 
3 / 2  1 

F2(q, P ) = A ( q ) + - P 2 + -  2x 2a,xy c - u x [ d p , r ( $ + q y [ ( d - b x ) P - x q ] )  x 6a,y C-ax 1. (A7) 

We start again by eliminating q from (2.7a, b )  to obtain 

p = a F2/dq = U ( c - ax) (  q + ~ p ) ~  - CJ F2/aP  + UP. (A81 

Eliminating q + y p  from (A2) and (A8),  we obtain 

y (  d - b x )  a F2/aq = y P  - XY aF2/a P - ( d  - bx)q. ('49) 

Now eliminate aF2/aP from (A6), (A9) to obtain 

Integrating, 

d 4a1y 
F2(q, [ ( d - b x ) P - x q ]  

This agrees with (A7) if we take 

1 d A( q )  = --q2 -- (A12a) 2y 2a,xy2q, 

1 
2 x  

B(  P) = -P2.  (A12b)  

Thus equation (6.7) has been established. 
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